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Further Results on Bandwidth-Efficient
Trellis-Coded Modulation with

Prescribed Decoding Delay
M. K. Simon,1 S. Darden,1 and M. Fong1

Motivated by previous work of Li and Rimoldi for obtaining bandwidth-efficient
trellis-coded modulation (TCM) signals with finite decoding delay, we present an al-
ternative representation for their encoder/signal-mapper transmitter structure that
consists of merely a single filter (with complex impulse response) having an input
equal to the (+1,−1) equivalent of the (0,1) input data bits in their implementation.
The filter impulse response is of duration (ν+1)/Tb (ν is the memory of the mod-
ulation, Tb is the bit time, and νTb is the decoding delay) and can be constructed
by designing its ν+1 bit time partitions in terms of the waveform differences that
characterize the finite decoding delay conditions found by Li and Rimoldi. The ad-
vantage of this simpler transmitter structure is that it readily allows computation
of the modulation’s power spectral density, from which one can determine the con-
ditions that must be imposed on the signal design to produce an equivalent lowpass
power spectral density. This in turn allows for a straightforward procedure for de-
signing the optimum signals to produce maximum bandwidth efficiency as measured
by fractional out-of-band power. Such optimum signal designs are determined for
memory-one and memory-two modulations and are presented as examples of the
application of the general results.

I. Introduction

In a paper presented at the 1997 International Symposium on Information Theory [1], Li and Rimoldi
presented a particular transmitter structure (the combination of an encoder of memory ν and a waveform
mapper—see Fig. 1) for trellis-coded modulations (TCMs) that, under certain constraints placed on the
differences of the transmitted waveforms, guaranteed decoding (using a conventional trellis decoder) with
a finite (ν bit duration) delay. Specifically, the encoder was simply a tapped delay line whose ν taps
together with the input bit were mapped into a set of M = 2ν+1 waveforms (signals) of 1-bit duration
(Tb) in accordance with a binary coded decimal (BCD) relationship. That is, if Un ∈ 0, 1 denotes the
nth input bit and Un−1, Un−2, · · · , Un−ν the previous ν bits (the state of the encoder), then the signal
transmitted in the interval nTb ≤ t ≤ (n+ 1)Tb would be si (t), where the index i is defined in terms
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Fig. 1.  Transmitter structure: (a) a trellis-coded modulation complex baseband transmitter
and (b) the special case of "MSK"  (ν = 1).
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of these bits by i = Un × 2ν + Un−1 × 2ν−1 + · · · + Un−ν−1 × 21 + Un−ν × 20. It was also shown in
[1] that, in addition to the constraints placed on the waveform differences, it was possible to further
constrain the signals so as to maximize the value of the minimum squared Euclidean distance taken over
all pairs of error event paths, namely, d2

min = 2. Such a maximum value of d2
min, which corresponds

to a number of binary modulations such as binary phase-shift-keying (BPSK) and the more bandwidth
efficient minimum-shift-keying (MSK), indicates that the receiver is providing optimum reception from a
power conservation standpoint. Finally, in the presence of all of the above constraints, Li and Rimoldi [1]
showed that it is possible to further optimize the system by selecting a set of waveforms that minimizes
the bandwidth–bit time product, BTb.

In this article, we investigate an alternative (simpler) representation of the transmitter configuration
suggested in [1] that consists of nothing more than a single filter (with complex impulse response) whose
input is the ±1 equivalent of the input data bits, namely, Ūn = 1 − 2Un for all n. This representation
comes about by viewing the transmitted signal as a random pulse train with a pulse shape that extends
beyond a single bit interval, i.e., one that contributes intersymbol interference (ISI) to its neighbors. As
we shall see, such a pulse shape of duration (ν + 1)Tb can be constructed by designing its ν+1 partitions
of duration Tb seconds in terms of the waveform differences that are output from Li and Rimoldi’s
transmitter. Such an ISI-based transmitter representation has the advantage that the power spectral
density (PSD) and hence the bandwidth are readily evaluated using known results for uncoded random
binary complex pulse trains. It also allows for applying the insight provided in Forney’s classic paper [2]
on the Viterbi algorithm, in particular the discussion regarding the use of this algorithm to combat ISI,
to the trellis decoder (optimum sequence detector), thereby intuitively validating the fact that, for the
class of TCMs under investigation, d2

min ≤ 2.
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One of the requirements placed on the set of possible transmitted waveforms si (t) , i = 0, 1, · · · ,M
in [1] is that they all have equal energy.2 Following consideration of the alternative representation
described above, we investigate the impact of relaxing the equal-energy restriction on the power efficiency
of the modulation scheme in its ability to achieve the largest value of d2

min. In particular, we propose an
additional set of constraints (now on the differences of the energies of the signals) that must be satisfied to
achieve the same finite decoding delay, using again the optimum sequence receiver, and then demonstrate
that such a set of constraints results in a signal design with a maximum value of d2

min less than two.
Allowing the signals to have unequal energy, however, suggests the possibility of additional flexibility in
the design of these signals in order to achieve the best bandwidth efficiency. Thus, the reduction in d2

min

caused by the unequal energy requirement can possibly trade off against an additional reduction in signal
bandwidth. Additional consideration of this notion warrants investigation.

II. ISI-Based Transmitter Implementation

The decomposition of a memory modulation into a cascade of an encoder and a memoryless modulator
was first applied to continuous phase modulation (CPM) by Rimoldi [3]. In particular, for MSK, a special
case of CPM corresponding to a rectangular frequency pulse of duration Tb seconds (full response) and
frequency-modulation index (two-sided frequency deviation normalized by the bit rate) h = 0.5, the
memory is ν = 1, and a transmitter analogous to Fig. 1 was obtained, as in Fig. 2. Comparing Figs. 1
and 2, we note that in the latter the state is represented by the differentially encoded version of the
current input bit Vn = Un ⊕ Vn−1, whereas in the former it would be just the previous input bit Un−1

itself. Furthermore, because of the differential encoding associated with the state in Fig. 2, a differential
decoder would be required in the receiver following the trellis decoder, which results in a small loss in
bit-error probability (BEP) performance. It is well known [4, Chapter 10] that precoding true MSK with
a differential decoder at the transmitter results in a modulation that is equivalent (spectral and power
efficiently) to MSK but without the need for differential decoding at the receiver. It is such precoded
MSK that is implemented by the simpler configuration of Fig. 1. In what follows, when referring to MSK
in the context of Fig. 1(b) or its equivalents, we shall assume that precoded MSK is what is implied, as
represented by the quotation marks around MSK in the caption.

Fig. 2.  Trellis-coded modulation complex baseband transmitter for MSK
based on Rimoldi decomposition of CPM.

si (t )

VnVn −1Un

Choose 
si (t )

where

D

i = Vn × 21 + Un  × 20  
s0 (t ) = 0 − j 1,   s1 (t ) = sin

Tb

πt t− j  cos
Tb

π

s2 (t ) = −s0 (t ), s3 (t ) = −s1 (t )+

2 Note that the assumption of equal energy does not imply constant envelope, as was the case for the continuous phase
modulations (CPMs) studied in [3] that served as the motivation for the work leading up to the results in [1]. Nevertheless,
the envelope fluctuation of the resulting signal designs will be small when compared with Nyquist designs of comparable
bandwidth efficiencies.
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Consider an uncoded random binary (±1) sequence
{
Ūn
}

that generates a random pulse train

s (t) =
∞∑

n=−∞
Ūnp (t− nTb) (1)

where p (t) 4= pR (t)+jpI (t) is a complex pulse shape defined on the interval 0 ≤ t ≤ (ν + 1)Tb. Consider
partitioning p (t) into ν + 1 adjoint pieces corresponding to its 1-bit interval sections. That is, we define
the set of Tb-second duration waveforms

pk (t) 4= pRk (t) + jpIk (t) =
{
p (t+ kT ) , 0 ≤ t ≤ Tb
0, otherwise

, k = 0, 1, 2, · · · , ν (2)

From Eq. (1), in any Tb-second interval, e.g., the nth, the signal s (t) will be described by one of M = 2ν+1

complex waveforms, i.e., sk (t− nTb) , k = 0, 1, 2, · · · , 2ν+1 − 1, which are expressed in terms of p (t) and
the data sequence

{
Ūn
}

by

sk (t− nTb) = Ūnp0 (t− nTb)+ Ūn−1p1 (t− nTb)+ · · ·+ Ūn−νpν (t− nTb) , k = 0, 1, 2, · · · , 2ν+1−1 (3)

where the index k is the equivalent (0,1) bit sequence {Un, Un−1, · · · , Un−ν} expressed in BCD form. As
an example, the set of waveforms for memory ν = 2 is given below:

s0 (t− nTb) = p0 (t− nTb) + p1 (t− nTb) + p2 (t− nTb)

s1 (t− nTb) = p0 (t− nTb) + p1 (t− nTb)− p2 (t− nTb)

s2 (t− nTb) = p0 (t− nTb)− p1 (t− nTb) + p2 (t− nTb)

s3 (t− nTb) = p0 (t− nTb)− p1 (t− nTb)− p2 (t− nTb)

s4 (t− nTb) = − p0 (t− nTb) + p1 (t− nTb) + p2 (t− nTb)

s5 (t− nTb) = − p0 (t− nTb) + p1 (t− nTb)− p2 (t− nTb)

s6 (t− nTb) = − p0 (t− nTb)− p1 (t− nTb) + p2 (t− nTb)

s7 (t− nTb) = − p0 (t− nTb)− p1 (t− nTb)− p2 (t− nTb)



(4)

We note from Eq. (4) that, because of the BCD construction, the following properties hold for the
signal differences:

s0 (t)− s1 (t) = s2 (t)− s3 (t) = s4 (t)− s5 (t) = s6 (t)− s7 (t) = 2p2 (t) (5a)

s0 (t)− s2 (t) = s4 (t)− s6 (t) = 2p1 (t) (5b)
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Also, an equivalent (at least in so far as the first equality is concerned) condition to Eq. (5b) is

s0 (t)− s4 (t) = s2 (t)− s6 (t) = 2p0 (t) (5c)

In the more generic case for arbitrary ν, the representations of the signals s0 (t) and s2m (t), m =
0, 1, 2, · · · , ν−1 as in Eq. (3) differ only in the bit position corresponding to pν−m (t). A similar statement
can be made for the signals s2m+1l (t) and s2m+1l+2m (t), m = 0, 1, 2, · · · , ν − 1, l = 1, 2, · · · , 2ν−m − 1.
Thus, the conditions corresponding to Eqs. (5a) and (5b) would be generalized as

s0 (t)− s2m(t) = s2m+1l (t)− s2m+1l+2m (t) = 2pν−m (t) , m = 0, 1, 2, · · · , ν − 1, l = 1, 2, . . . , 2ν−m − 1

(6)

and in addition the generalization of Eq. (5c) becomes

s0 (t)− s2ν (t) = s2ν−1 (t)− s2ν+2ν−1 (t) = 2p0 (t) (7)

The conditions on the signal differences of si (t) given in Eq. (6) are precisely those of Theorem I in [1],
which guarantees a finite decoding delay of ν bits using an optimum trellis-coded receiver.3 Therefore,
since p (t) is entirely specified by its adjoint Tb-second sections pi (t) , i = 0, 1, · · · , ν, we see that the
transmitter of Fig. 1(a) can be equivalently implemented (see Fig. 3) by passing the input ±1 data
sequence

{
Ūn
}

(modeled as a random impulse train) through a filter with complex impulse response

p (t )

pR (t )

pI (t )

Re {s (t )}

s (t )

Im {s (t )}

(a)

(b)

Fig. 3.  Transmitter structure equivalent to Fig. 1(a):                        
(a)  complex baseband form and (b) I −Q baseband form.

(t − nTb )
n = − ∞

∞

∑ δ
−

Un

(t − nTb )
n = − ∞

∞

∑ δ
−

Un

3 It has also been noted by Li and Rimoldi that these conditions guarantee that the Euclidean distance between any pair of
paths in the trellis decoder that diverge at time n and remerge at time n+ ν+1 is the same. Furthermore, the number of
correlators (matched filters) needed to implement the optimum MLSE receiver will now vary linearly with memory, i.e.,
ν + 1, as opposed to exponentially with memory, i.e., 2ν+1, which is the case when no constraints are imposed on the
decoding delay.
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p (t) =
ν∑
i=0

pi (t− iTb)

pi (t) =
1
2
[
s0 (t)− s2ν−i (t)

]


(8)

Equivalently, the real and imaginary parts of the baseband signal (to be modulated onto quadrature
carriers for transmission over the channel) can be obtained by passing the common input±1 data sequence{
Ūn
}

through a pair of filters with respective impulse responses

pRi (t) =
1
2
[
sR0 (t)− sR2ν−i (t)

]

pIi (t) =
1
2
[
sI0 (t)− sI2ν−i (t)

]
 (9)

Note that pR (t) and pI (t) as constructed from the components in Eq. (9) do not necessarily have equal
energy. We shall see that this is true even for the simple case of MSK. It is further interesting to note
that the signals of Eq. (4) also satisfy the conditions

s0 (t) = − s7 (t)

s1 (t) = − s6 (t)

s2 (t) = − s5 (t)

s3 (t) = − s4 (t)


(10)

or in the case of arbitrary memory ν,

sm (t) = −s2ν+1−1−m (t) , m = 0, 1, · · · , 2ν − 1 (11)

The conditions of Eq. (11) are precisely those given in [1] that achieve the maximum value of minimum
squared Euclidean distance, namely, d2

min = 2. Thus, the implementation of Fig. 3 not only achieves
finite decoding delay but also automatically achieves the optimum performance from the standpoint of
power efficiency. This result should not be surprising in view of the findings in [2], which indicate that a
maximum-likelihood (optimum) sequence estimator (MLSE) form of receiver such as the trellis decoder
can completely remove the ISI and thereby achieve the performance of a zero-ISI (full-response) system.

What remains is to consider the bandwidth efficiency of signals designed according to the constraints
of Eqs. (6), (7), and (11). This is where the ISI-based representation of Fig. 3 helps considerably since the
evaluation of the PSD of the transmitted signal can be trivially accomplished using well-known relations
[4] for random pulse trains. This is considered in the next section.
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III. Evaluation of the Power Spectral Density

In this section, we compute the PSD of a random complex pulse train, e.g., that in Eq. (1), modulated
onto quadrature carriers. That is, if the transmitted bandpass signal is given by4

s̃ (t) = Re
{
s (t) ej2πfmt

}
=

( ∞∑
n=−∞

ŪnpR (t− nTb)
)

cos 2πfmt−
( ∞∑
n=−∞

ŪnpI (t− nTb)
)

sin 2πfmt (12)

then it is straightforward to show, using an extension of the methods in [4, Chapter 2], that the PSD of
s̃ (t) is given by

S (f) =
1

4Tb
|PR (f − fm) + jPI (f − fm)|2 +

1
4Tb
|PR (f + fm)− jPI (f + fm)|2

=
1

4Tb
|P (f − fm)|2 +

1
4Tb
|P (−f − fm)|2 4= Su (f) + Sl (f) (13)

where

PR (f) 4= F {pR (t)}

PR (f) 4= F {pI (t)}

P (f) 4= F {p (t)}


(14)

are the Fourier transforms of the corresponding pulse shapes and, in general, are complex functions of f ,
and the u and l subscripts denote the upper and lower sidebands, respectively. Note that the signal in
Eq. (12) differs from the usual quadrature phase-shift-keying (QPSK) type of signal in that here the same
data sequence is passed through both the in-phase (I) and quadrature (Q) filters, whereas for QPSK the
two sequences passing through these filters would be different and independent of one another. As such,
the PSD in Eq. (13) cannot, in general, be written in the form [4, Chapter 2, Eq. (2.131)]

S (f) =
1
4
G (f − fc) +

1
4
G (f + fc) (15)

where G (f) is the equivalent baseband (symmetrical around f = 0) PSD and is a real function of f , and
fc is some arbitrary carrier frequency.5

4 We use the notation “fm” for the actual modulating frequency of the quadrature carriers to distinguish it from the carrier
frequency around which the PSD is symmetric, which will be denoted by “fc.” More about this shortly.

5 What is meant here by an “equivalent baseband PSD” is a PSD around zero frequency that is identical to the upper or
lower sideband of the bandpass PSD frequency shifted to the origin. While it is always possible to express Eq. (13) in the
form S (f) = (1/4)Gu (f − fc) + (1/4)Gl (f + fc), where Gu (f) = Gl (−f), in general, there is no guarantee that Gu (f)
[or equivalently, Gl (f)] has symmetry about the origin or, for that matter, about any frequency fc. Stated another way,
while demodulating the bandpass signal with a carrier at some frequency fc (not necessarily equal to the modulating
frequency fm) will always produce a symmetric PSD around the origin, the resulting baseband PSD will, in general, be a
combination (sum) of the aliased upper and lower sidebands, and may or may not appear as a simple frequency translation
of either of these sidebands.
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To illustrate the above point, consider the specific case of MSK (ν = 1) for which the four complex
signals are given by6

s0 (t) = 0 + j1

s1 (t) = sin
πt

Tb
− j cos

πt

Tb
= s∗0 (t) ej(πt/Tb)

s2 (t) = − s1 (t)

s3 (t) = − s0 (t)


(16)

In terms of the ISI-based representation, we obtain from Eq. (8) that

p0 (t) =
1
2

sin
πt

Tb
+ j

1
2

[
1− cos

πt

Tb

]

p1 (t) = − 1
2

sin
πt

Tb
+ j

1
2

[
1 + cos

πt

Tb

]


(17)

Thus, using Eq. (17) to define the complex pulse shape of Eq. (8), we obtain

p (t) =
1
2

sin
πt

Tb
+ j

1
2

[
1− cos

πt

Tb

]
, 0 ≤ t ≤ 2Tb (18)

That is, an appropriate implementation for MSK that guarantees a decoding delay of 1 bit is that of
Fig. 3 with I and Q filters having impulse responses

pR (t) =
1
2

sin
πt

Tb
, 0 ≤ t ≤ 2Tb

pI (t) =
1
2

[
1− cos

πt

Tb

]
, 0 ≤ t ≤ 2Tb

 (19)

Taking the Fourier transforms of pR (t) and pI (t) of Eq. (8) and using these in Eq. (13), we arrive at the
following result for the bandpass PSD:

6 Note that, for the Rimoldi decomposition of MSK illustrated in Fig. 2, the signals satisfy the condition s0 (t) − s1 (t) =
− (s2 (t)− s3 (t)) rather than s0 (t)− s1 (t) = s2 (t)− s3 (t) as in Eq. (5a).
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S (f) =
Tb
4

sin2 2π (f − fm)Tb
π2

[
1

1− 2 (f − fm)Tb
+

1
2 (f − fm)Tb

]2

+
Tb
4

sin2 2π (f + fm)Tb
π2

[
1

1 + 2 (f + fm)Tb
− 1

2 (f + fm)Tb

]2

= Su (f) + Sl (f) (20)

Note that while S (f) is an even function of f (as it should be for a real signal), its upper and lower
sidebands, Su (f) and Sl (f), are not symmetric around fm and −fm, respectively. However, there does
exist a frequency, fc 6= fm, around which the upper sideband (and similarly for the lower sideband) is
symmetric. To understand why this is so, we remind the reader that, according to Rimoldi’s decomposi-
tion [3], the modulation frequency chosen for the quadrature carriers should be shifted from the carrier
frequency fc around which the bandpass spectrum is to be symmetric by an amount equal to 1/4Tb,
i.e., fm = fc − 1/4Tb. The reason for this stems from the fact that the specification of the signals as in
Eq. (16) results in a tilted trellis where the phase tilt is equal to π/2 rad. (Note that a frequency shift
of ∆f = 1/4Tb is equal to a phase shift 2π∆fTb = π/2.) To demonstrate that this is indeed the case, we
evaluate the PSD of MSK using Eq. (20) with the shifted value of modulating frequency fm = fc−1/4Tb.
When this is done, the result in Eq. (15) is obtained with

G (f) =
16Tb
π2

cos2 2πfTb
(1− 16f2T 2

b )2 (21)

which corresponds (except for a normalization factor) to the well-know PSD of MSK [4, Chapter 2,
Eq. (2.148)].

The question that comes about now is: For arbitrary memory ν and a baseband signal design satisfying
Eqs. (6), (7), and (11), is it possible to find a modulating frequency fm that will produce a symmetric
bandpass PSD around some carrier frequency fc? If not, then one cannot find an equivalent baseband
PSD in the sense of Footnote 5 and hence the bandwidth (whatever measure is used) of the signal must
be determined from the RF waveform. To shed some light on the answer to this question, we consider
the simplest case of unit memory, where the complex pulse shape of Eq. (8) is simply given by

p (t) =
1
2
[
s0 (t)− s2 (t) + s0 (t− Tb)− s1 (t− Tb)

]

=
1
2
[
s0 (t) + s0 (t− Tb) + s1 (t) + s2 (t− Tb)

]
, 0 ≤ t ≤ 2Tb (22)

where, in accordance with Eq. (11), we have used the fact that s1 (t) = −s2 (t) in order to achieve
d2

min = 2. The Fourier transform of p (t) in Eq. (22) is given by

P (f) =
1
2

[∫ Tb

0

s0 (t)
(
1 + e−j2πfTb

)
e−j2πftdt+

∫ Tb

0

s1 (t) e−j2πftdt+ e−j2πfTb
∫ Tb

0

s2 (t) e−j2πftdt

]
(23)

Since from Eq. (13) the upper spectral sideband is Su (f) = (1/4Tb) |P (f − fm)|2, then, in order for this
to be symmetric around fc, we must have
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∣∣P (fc + f − fm)
∣∣2 =

∣∣P (fc − f − fm)
∣∣2 (24)

or, letting fs
4= fc−fm denote the separation between the actual modulation frequency and the bandpass

frequency around which symmetry is desired, s0 (t) and s1 (t) must be chosen to satisfy

∣∣P (fs + f)
∣∣2 =

∣∣P (fs − f)
∣∣2 (25a)

or equivalently

∣∣P (fs + f)
∣∣2 =

∣∣P ∗ (fs − f)
∣∣2 (25b)

for some fs. In terms of Eq. (23), the spectral equality in Eq. (25b) requires that we have

∣∣∣∣∣
∫ Tb

0

(
s0(t)e−j2πfst

)
e−j2πftdt+ e−j2π(fs+f)Tb

∫ Tb

0

(
s0(t)e−j2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s1(t)e−j2πfst

)
e−j2πftdt+ e−j2π(fs+f)Tb

∫ Tb

0

(
s2(t)e−j2πfst

)
e−j2πftdt

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ Tb

0

(
s∗0(t)e

j2πfst
)
e−j2πftdt+ ej2π(fs−f)Tb

∫ Tb

0

(
s∗0(t)e

j2πfst
)
e−j2πftdt

+
∫ Tb

0

(
s∗1(t)e

j2πfst
)
e−j2πftdt+ ej2π(fs−f)Tb

∫ Tb

0

(
s∗2(t)e

j2πfst
)
e−j2πftdt

∣∣∣∣∣
2

(26)

Sufficient conditions on the signals {si (t)} for Eq. (26) to be satisfied are

s1 (t) = s∗0 (t) ej4πfst

s2 (t) = ej4πfsTbs∗0 (t) ej4πfst

 (27)

However, since in arriving at Eq. (26) we have already assumed that s1 (t) = −s2 (t), then Eq. (27) further
requires that fs = 1/4Tb, from which we obtain the complete signal set

s1 (t) = s∗0 (t) ejπt/Tb

s2 (t) = − s∗0 (t) ejπt/Tb

s3 (t) = − s0 (t)


(28)
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Note that for memory one it is necessary to specify only s0 (t) in order to arrive at the complete signal set.
Also, the signal set of Eq. (28) satisfies the finite decoding delay condition of [1], namely, s0 (t)− s1 (t) =
s2 (t)− s3 (t).

The equivalent lowpass PSD is obtained by first using s1 (t) = −s2 (t) in Eq. (23), resulting in

P (f) =
1
2

[∫ Tb

0

(
s0 (t) + s1 (t)

)
e−j2πftdt+ e−j2πfTb

∫ Tb

0

(
s0 (t)− s1 (t)

)
e−j2πftdt

]

=
1
2
[
S0 (f) + S1 (f) + e−j2πfTb

(
S0 (f)− S1 (f)

)]
(29)

from which one immediately gets

1
Tb

∣∣P (f)
∣∣2 =

1
4Tb

[∣∣S0 (f) + S1 (f)
∣∣2 +

∣∣e−j2πfTb(S0 (f)− S1 (f)
)∣∣2

+ 2 Re
{(
S∗0 (f) + S∗1 (f)

)(
S0 (f)− S1 (f)

)
e−j2πfTb

}]

=
1

2Tb

[∣∣S0 (f)
∣∣2 +

∣∣S1 (f)
∣∣2 + Re

{(
S∗0 (f) + S∗1 (f)

)(
S0 (f)− S1 (f)

)
e−j2πfTb

}]
(30)

In Eqs. (29) and (30), Si (f) denotes the Fourier transform of si (t). Using the first symmetry condition
of Eq. (28) in Eq. (30) gives the desired equivalent lowpass PSD, namely,

1
Tb

∣∣∣∣P(f+
1

4Tb

)∣∣∣∣2

=
1

2Tb

[∣∣∣∣S0

(
f +

1
4Tb

)∣∣∣∣2 +
∣∣∣∣S0

(
−f +

1
4Tb

)∣∣∣∣2

+Im
{(

S∗0

(
f +

1
4Tb

)
+ S0

(
−f +

1
4Tb

))(
S0

(
f +

1
4Tb

)
− S∗0

(
−f +

1
4Tb

))
e−j2πfTb

}]

=
∣∣∣∣S0

(
f +

1
4Tb

)∣∣∣∣2 [1− sin 2πfTb] +
∣∣∣∣S0

(
−f +

1
4Tb

)∣∣∣∣2 [1 + sin 2πfTb]

+ 2
[
Re
{
S0

(
f +

1
4Tb

)}
Im
{
S0

(
−f +

1
4Tb

)}

+Re
{
S0

(
−f +

1
4Tb

)}
Im
{
S0

(
f +

1
4Tb

)}]
cos 2πfTb (31)

11



which is clearly an even function of frequency.

Although Eq. (28) is satisfied by the MSK signals of Eq. (16), as should be the case, this condition
applies in a more general context since it does not explicitly specify s0 (t) but rather only the relation
between s0 (t) and s1 (t). This should not be surprising since it has been shown in the past that there exists
an entire class of MSK-type signals (referred to in [5] as generalized MSK) that happen to also be constant
envelope (in addition to being equal energy) and that achieve d2

min = 2 as well as a decoding delay of 1-bit
interval. To illustrate the point, consider the class of binary full-response CPM signals with modulation
index h = 1/2 and equivalent phase pulse f (t), which satisfies the conditions f (0) = 0, f (Tb) = 1/2. A
specific example of such a signal is Amoroso’s sinusoidal frequency-shift keying (SFSK) [6] for which

f (t) =
t

2Tb

(
1− sin 2πt/Tb

2πt/Tb

)
, 0 ≤ t ≤ Tb (32)

corresponding to a raised-cosine frequency pulse

g(t) =
df (t)
dt

=
1

2Tb

(
1− cos

2πt
Tb

)
, 0 ≤ t ≤ Tb (33)

Analogously to Eq. (16), the set of signals that satisfy Eq. (27) are now

s0 (t) = sin

(
π

(
f (t)− t

2Tb

))
+ j cos

(
π

(
f (t)− t

2Tb

))

s1 (t) = sin

(
π

(
f (t) +

t

2Tb

))
− j cos

(
π

(
f (t) +

t

2Tb

))
= s∗0 (t) ej(πt/Tb)

s2 (t) = − s1 (t)

s3 (t) = − s0 (t)



(34)

(Note that Eq. (34) reduces to Eq. (16) for MSK itself when f (t) = t/2Tb, 0 ≤ t ≤ Tb, and g (t) =
1/2Tb, 0 ≤ t ≤ Tb.) For SFSK, Eq. (34) takes the specific form

s0 (t) = sin

(
πt

2Tb

(
sin 2πt/Tb

2πt/Tb

))
+ j cos

(
πt

2Tb

(
sin 2πt/Tb

2πt/Tb

))

s1 (t) = sin

(
πt

Tb

(
1− 1

2
sin 2πt/Tb

2πt/Tb

))
− j cos

(
πt

Tb

(
1− 1

2
sin 2πt/Tb

2πt/Tb

))

s2 (t) = − s1 (t)

s3 (t) = − s0 (t)



(35)
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For memory two, the pulse shape is given by

p (t) =
1
2
[
s0 (t)− s4 (t) + s0 (t− Tb)− s2 (t− Tb) + s0 (t− 2Tb)− s1 (t− 2Tb)

]

=
1
2
[
s0 (t) + s0 (t− Tb) + s0 (t− 2Tb) + s3 (t)− s2 (t− Tb)− s1 (t− 2Tb)

]
, 0 ≤ t ≤ 3Tb (36)

with Fourier transform

P (f) =
1
2

[(
1 + e−j2πfTb + e−j4πfTb

) ∫ Tb

0

s0(t)e−j2πftdt+
∫ Tb

0

s3(t)e−j2πftdt

−e−j2πfTb
∫ Tb

0

s2(t)e−j2πftdt− e−j4πfTb
∫ Tb

0

s1(t)e−j2πftdt

]
(37)

Applying Eq. (37) to Eq. (25b), we obtain the bandpass spectral symmetry condition

∣∣∣∣∣
∫ Tb

0

(
s0(t)e−j2πfst

)
e−j2πftdt+ e−j2π(fs+f)Tb

∫ Tb

0

(
s0(t)e−j2πfst

)
e−j2πftdt+ e−j4π(fs+f)Tb

×
∫ Tb

0

(
s0(t)e−j2πfst

)
e−j2πftdt+

∫ Tb

0

(
s3(t)e−j2πfst

)
e−j2πftdt− e−j2π(fs+f)Tb

×
∫ Tb

0

(
s2(t)e−j2πfst

)
e−j2πftdt− e−j4π(fs+f)Tb

∫ Tb

0

(
s1(t)e−j2πfst

)
e−j2πftdt

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ Tb

0

(
s∗0(t)e

j2πfst
)
e−j2πftdt+ ej2π(fs−f)Tb

∫ Tb

0

(
s∗0(t)e

j2πfst
)
e−j2πftdt+ ej4π(fs−f)Tb

×
∫ Tb

0

(
s∗0(t)e

j2πfst
)
e−j2πftdt+

∫ Tb

0

(
s∗3(t)e

j2πfst
)
e−j2πftdt− ej2π(fs−f)Tb

×
∫ Tb

0

(
s∗2(t)e

j2πfst
)
e−j2πftdt− ej4π(fs−f)Tb

∫ Tb

0

(
s∗1(t)e

j2πfst
)
e−j2πftdt

∣∣∣∣∣
2

(38a)

or, letting s3 (t) = s2 (t)− s0 (t) + s1 (t) in accordance with Eq. (5a),
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∣∣∣∣∣e−j2π(fs+f)Tb

∫ Tb

0

(
s0 (t) e−j2πfst

)
e−j2πftdt + e−j4π(fs+f)Tb

∫ Tb

0

(
s0 (t) e−j2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s2 (t) e−j2πfst

)
e−j2πftdt− e−j2π(fs+f)Tb

∫ Tb

0

(
s2 (t) e−j2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s1 (t) e−j2πfst

)
e−j2πftdt− e−j4π(fs+f)Tb

∫ Tb

0

(
s1 (t) e−j2πfst

)
e−j2πftdt

∣∣∣∣∣
2

=

∣∣∣∣∣ej2π(fs−f)Tb

∫ Tb

0

(
s∗0 (t) ej2πfst

)
e−j2πftdt + ej4π(fs−f)Tb

∫ Tb

0

(
s∗0 (t) ej2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s∗2 (t) ej2πfst

)
e−j2πftdt− ej2π(fs−f)Tb

∫ Tb

0

(
s∗2 (t) ej2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s∗1 (t) ej2πfst

)
e−j2πftdt −ej4π(fs−f)Tb

∫ Tb

0

(
s∗1 (t) ej2πfst

)
e−j2πftdt

∣∣∣∣∣
2

(38b)

Analogously with Eq. (27), satisfying Eq. (38b) implies the set of conditions

s1 (t) + s2 (t) =
(
s∗1 (t) + s∗2 (t)

)
ej4πfst (39a)

s0 (t)− s2 (t) = ej4πfsTb
(
s∗0 (t)− s∗2 (t)

)
ej4πfst (39b)

s0 (t)− s1 (t) = ej8πfsTb
(
s∗0 (t)− s∗1 (t)

)
ej4πfst (39c)

Again letting fs = 1/4Tb and summing Eqs. (39a), (39b), and (39c) gives

s1 (t) + s2 (t) =
(
s∗1 (t) + s∗2 (t)

)
ejπt/Tb (40a)

s0 (t) = s∗2 (t) ejπt/Tb
(
or equivalently, s2 (t) = s∗0 (t) ejπt/Tb

)
(40b)

s0 (t)− s1 (t) =
(
s∗0 (t)− s∗1 (t)

)
ejπt/Tb (40c)

Actually, Eq. (40c) is not an independent condition since it can be derived from Eqs. (40a) and (40b).
Thus, Eqs. (40a) and (40b) are sufficient to determine the signal design. Expressing the signals in terms
of their real and imaginary parts, i.e., si (t) = siR (t) + jsiI (t) , i = 0, 1, · · · , 3, then Eqs. (40a) and (40c)
can alternatively be written as
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(
s1R (t) + s2R (t)

)(
1− cos

πt

Tb

)
=
(
s1I (t) + s2I (t)

)
sin

πt

Tb
(41a)

(
s0R (t)− s1R (t)

)(
1− cos

πt

Tb

)
=
(
s0I (t)− s1I (t)

)
sin

πt

Tb
(41b)

An example of a set of signals that satisfies the symmetric PSD conditions of Eq. (40) [or Eq. (41)]
as well as the foregoing conditions for finite (2-bit) decoding delay and d2

min = 2 is given as follows.
Analogously to the MSK design of Eq. (16), let

s2(t) = sin
πt

Tb
− j cos

πt

Tb

s0(t) = 0 + j1

 (42)

which clearly satisfies Eq. (40b). Next let

s1R (t) + s2R (t) = g0 (t) cos
πt

2Tb
(43)

where g0 (t) is as yet an arbitrary function to be specified. From Eq. (41a), we have

s1I (t) + s2I (t) = g0 (t) cos
πt

2Tb

1− cos
πt

Tb

sin
πt

Tb

 = g0 (t) sin
πt

2Tb
(44)

Since, from Eq. (42), s2R (t) = sin (πt/Tb) and s2I (t) = − cos (πt/Tb), then making use of these in
Eqs. (43) and (44) gives

s1R (t) = g0 (t) cos
πt

2Tb
− sin

πt

Tb
(45a)

s1I (t) = g0 (t) sin
πt

2Tb
+ cos

πt

Tb
(45b)

or

s1 (t) = g0 (t) cos
πt

2Tb
− sin

πt

Tb
+ j

(
g0 (t) sin

πt

2Tb
+ cos

πt

Tb

)
(46)

Note that, with the above choice of s1 (t) and s0 (t), the relation in Eq. (40c) [or equivalently Eq. (41b)]
is automatically satisfied as previously mentioned. The remainder of the signaling set is determined from

s3 (t) = s2 (t)− s0 (t) + s1 (t)

si (t) = − s7−i (t) , i = 4, 5, 6, 7

 (47)
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The function g0 (t) in Eq. (46) must be chosen to satisfy the unit power condition on the signals,
i.e., (1/Tb)

∫ Tb
0
|si (t)|2 dt = 1. Substituting Eq. (46) into this condition and simplifying results in the

requirement on g0 (t):

1
Tb

∫ Tb

0

g2
0 (t) dt =

2
Tb

∫ Tb

0

g0 (t) sin
πt

2Tb
dt (48)

It can also be shown that the condition of Eq. (48) results in (1/Tb)
∫ Tb

0
|s3 (t)|2 dt = 1, which completes

the unit power requirement on the entire signal set.

Clearly, the function g0 (t) = 2 sinπt/2Tb will satisfy Eq. (48). However, this results in redundant
signals since now [see Eqs. (43) and (39)] s1 (t) becomes equal to s0 (t) and also s3 (t) becomes equal
to s2 (t), which furthermore produces a memory-two PSD equal to that of memory-one MSK, i.e., no
improvement. Thus, we must perturb g0 (t) away from 2 sinπt/2Tb to obtain a distinct signal set. What
remains is to determine suitable choices for g0 (t) that yield improved (relative to MSK-type memory-one
schemes) bandwidth efficiency.

Before doing so, however, we first extend the above considerations to generalized MSK. If instead of
Eq. (42) we were to choose the signals corresponding to Eq. (34), i.e.,

s0 (t) = sin

(
π

(
f (t)− t

2Tb

))
+ j cos

(
π

(
f (t)− t

2Tb

))

s2 (t) = sin

(
π

(
f (t) +

t

2Tb

))
− j cos

(
π

(
f (t) +

t

2Tb

))


(49)

then the replacement for Eq. (46) would become

s1 (t) = g0 (t) cos
πt

2Tb
− sin

(
π

(
f (t) +

t

2Tb

))
+ j

[
g0 (t) sin

πt

2Tb
+ cos

(
π

(
f (t) +

t

2Tb

))]
(50)

Applying the unit power condition to Eq. (50) results in the requirement on g0 (t), analogous to Eq. (48),

1
Tb

∫ Tb

0

g2
0 (t) dt =

2
Tb

∫ Tb

0

g0 (t) sinπf (t) dt (51)

Finally, starting with the optimum memory-one solution, namely, the particular s0 (t) and s1 (t) that
satisfy Eq. (28) and also achieve the best bandwidth efficiency (to be discussed in the next section), we
can arrive at an optimum memory-two solution as follows. Let s(1)

0 (t) and s
(1)
1 (t) denote this optimum

memory-one solution. Then, since for memory two the condition of Eq. (40b) is analogous to Eq. (28),
we choose

s
(2)
0 (t) 4= s

(2)
0R (t) + js

(2)
0I (t) = s

(1)
0 (t)

s
(2)
2 (t) 4= s

(2)
2R (t) + js

(2)
2I (t) = s

(1)
1 (t)

 (52)
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and from Eqs. (43) and (5a),

s
(2)
1 (t) = g0 (t) cos

πt

2Tb
− s(2)

2R (t) + j

(
g0 (t) sin

πt

2Tb
− s(2)

2I (t)
)

s
(2)
3 (t) = s

(2)
2 (t)− s(2)

0 (t) + s
(2)
1 (t)

 (53)

where, from the unit power condition applied to s(2)
1 (t), g0 (t) must satisfy7

1
Tb

∫ Tb

0

g2
0 (t) dt =

2
Tb

∫ Tb

0

g0 (t)
[
s

(2)
2R (t) cos

πt

2Tb
+ s

(2)
2I (t) sin

πt

2Tb

]
dt

=
2
Tb

∫ Tb

0

g0 (t)
[
s

(1)
1R (t) cos

πt

2Tb
+ s

(1)
1I (t) sin

πt

2Tb

]
dt (54)

Although as previously stated g0 (t) is as yet arbitrary, it must be scaled so as to satisfy Eq. (54). To
determine this scale factor, we write g0 (t) as g0 (t) = KG0 (t), whereupon substitution in Eq. (54) gives
the solution for K as

K =

2
Tb

∫ Tb
0
G0(t)

[
s

(1)
1R(t) cos

πt

2Tb
+ s

(1)
1I (t) sin

πt

2Tb

]
dt

1
Tb

∫ Tb
0
G2

0(t)dt
(55)

Thus, Eqs. (52) through (55) represent a formal procedure for designing an optimum memory-two signal
set entirely in terms of the optimum memory-one solution s

(1)
0 (t) = s

(1)
0R (t) + js

(1)
0I (t).8

Following along the lines of Eqs. (29) and (30), the equivalent PSD of the memory-two modulation
may be found. In particular, the Fourier transform of the equivalent pulse shape in Eq. (8) is given as

P (f) =
1
2
[
S0 (f) + S3 (f) + e−j2πfTb

(
S0 (f)− S2 (f)

)
+ e−j4πfTb

(
S0 (f)− S1 (f)

)]
(56)

Using the additional relation S3 (f) = S1 (f) + S2 (f) − S0 (f) to achieve finite decoding delay, one
immediately gets

7 Note that the condition of Eq. (54) also results in (1/Tb)
∫ Tb

0
|s3(t)|2dt = 1, as required.

8 This statement can be generalized to apply to arbitrary memory ν. In particular, it can be shown that an optimum
solution for memory ν can be obtained by using the optimum solution for memory ν − 1 as a subset of the signal design,
with the remainder of signals obtained from the signal difference conditions of Eqs. (6) and (7) and the design of only one
additional signal based upon a procedure analogous to Eqs. (52) through (55). Finally, we point out that the foregoing
procedure represents a sufficient (but not necessary) condition for arriving at an optimum solution.
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1
Tb

∣∣P (f)
∣∣2 =

1
4Tb

[∣∣S1 (f) + S2 (f)
∣∣2 +

∣∣S0 (f)− S2 (f)
∣∣2 +

∣∣S0 (f)− S1 (f)
∣∣2

+ 2 Re
{(
S∗1 (f) + S∗2 (f)

)(
S0 (f)− S2 (f)

)
e−j2πfTb

}

+ 2 Re
{(
S∗0 (f)− S∗2 (f)

)(
S0 (f)− S1 (f)

)
e−j2πfTb

}

+2 Re
{(
S∗1 (f) + S∗2 (f)

)(
S0 (f)− S1 (f)

)
e−j4πfTb

}]
(57)

Finally, the desired equivalent lowpass PSD is

1
Tb

∣∣∣∣P (f +
1

4Tb

)∣∣∣∣2 =
1

4Tb

[ ∣∣∣∣S1

(
f +

1
4Tb

)
+ S2

(
f +

1
4Tb

)∣∣∣∣2

+
∣∣∣∣S0

(
f +

1
4Tb

)
− S2

(
f +

1
4Tb

)∣∣∣∣2 +
∣∣∣∣S0

(
f +

1
4Tb

)
− S1

(
f +

1
4Tb

)∣∣∣∣2

+ 2 Re
{(

S∗1

(
f +

1
4Tb

)
+ S∗2

(
f +

1
4Tb

))(
S0

(
f +

1
4Tb

)
− S2

(
f +

1
4Tb

))
e−j2π[f+(1/4Tb)]Tb

}

+ 2 Re
{(

S∗0

(
f +

1
4Tb

)
− S∗2

(
f +

1
4Tb

))(
S0

(
f +

1
4Tb

)
− S1

(
f +

1
4Tb

))
e−2π[f+(1/4Tb)]Tb

}

+ 2 Re
{(

S∗1

(
f +

1
4Tb

)
+ S∗2

(
f +

1
4Tb

))(
S0

(
f +

1
4Tb

)
− S1

(
f +

1
4Tb

))
e−4π[f+(1/4Tb)]Tb

}]

(58)

Since the symmetry conditions in Eq. (39) result in

S1

(
f +

1
4Tb

)
+ S2

(
f +

1
4Tb

)
= S∗1

(
−f +

1
4Tb

)
+ S∗2

(
−f +

1
4Tb

)

S0

(
f +

1
4Tb

)
− S2

(
f +

1
4Tb

)
= S∗0

(
−f +

1
4Tb

)
− S∗2

(
−f +

1
4Tb

)

S0

(
f +

1
4Tb

)
− S1

(
f +

1
4Tb

)
= S∗0

(
−f +

1
4Tb

)
− S∗1

(
−f +

1
4Tb

)


(59)

then Eq. (58) is clearly an even function of frequency.
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IV. Optimizing the Bandwidth Efficiency

Having now obtained expressions for the equivalent baseband PSD, it is now straightforward to use
these to determine the sets of signals that satisfy all of the previous constraints and in addition maximize
the power within a given bandwidth, B. In mathematical terms, we search for the set of signals that for
a given value of B maximizes the fractional in-band power

η =

∫ B/2
−B/2G(f)df∫∞
−∞G(f)df

G(f) 4=
1
Tb

∣∣∣∣P (f +
1

4Tb

)∣∣∣∣2


(60)

subject to the unit power constraint

1
Tb

∫ Tb

0

∣∣si(t)∣∣2dt = 1, i = 0, 1, 2, · · · ,M − 1 (61)

A. Memory-One Case

For the case of ν = 1, we observed that the entire signal set may be determined from the single
complex signal s0 (t). Thus, the optimization of bandwidth efficiency corresponds to substituting the
PSD of Eq. (31) [which is entirely specified in terms of the Fourier transform of s0 (t)] into Eq. (60) and
then maximizing η subject to Eq. (61) or equivalently from Parseval’s theorem

1
Tb

∫ ∞
−∞

∣∣S0 (f)
∣∣2dt = 1 (62)

Such a procedure would result in an optimum S0 (f) from whose inverse Fourier transform one could
determine the optimum signal set. Since S0 (f) exists, in general, over the entire doubly infinite frequency
axis, it is perhaps simpler to approach the optimization in the time domain since s0 (t) is indeed time
limited to the interval 0 ≤ t ≤ Tb. To do this, we first need to rewrite the PSD of Eq. (31) in terms of s0 (t)
rather than S0 (f) and then to perform the integrations on f required in Eq. (60). After considerable
manipulation, and for simplicity of notation normalizing Tb = 1 (i.e., BTb = B), it can be shown that

∫ B/2

−B/2
G (f) df =

B

∫ 1

0

∫ 1

0

s0 (t) s∗0 (τ) e−j(π/2)(t−τ)

[
sinc πB (t− τ)− j 1

2
sinc πB (t− τ + 1)

+j
1
2

sinc πB (t− τ − 1)
]
dtdτ

+
1
2
B Im

{∫ 1

0

∫ 1

0

s0 (t) s0 (τ) e−j(π/2)(t+τ)
[
sinc πB (t− τ + 1) + sinc πB (t− τ − 1)

]
dtdτ

}
(63)
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where sincx 4= sinx/x. Furthermore, it is straightforward to show that

∫ ∞
−∞

G (f) df = 1 (64)

and thus η is given by Eq. (63).

As a check on Eq. (63), consider its evaluation for the MSK signal of Eq. (16). Substituting s0 (t) =
0 + j1 in Eq. (63) and simplifying gives

∫ B/2

−B/2
G (f) df = B

∫ 1

0

∫ 1

0

cos
π

2
(t− τ) sincπB (t− τ) dtdτ

+B

∫ 1

0

∫ 1

0

sin
π

2
t cos

π

2
τ sincπB (t− τ − 1) dtdτ

+B

∫ 1

0

∫ 1

0

cos
π

2
t sin

π

2
τ sincπB (t− τ + 1) dtdτ

= B

∫ 1

0

∫ 1

0

cos
π

2
(t− τ) sincπB (t− τ) dtdτ

+ 2B
∫ 1

0

∫ 1

0

sin
π

2
t cos

π

2
τ sincπB (t− τ − 1) dtdτ (65)

The conventional computation of the PSD of MSK is obtained from

G (f) =
1

2Tb

∣∣∣∣F {√2 sin
πt

2Tb

}∣∣∣∣2 =
∣∣∣∣F {sin

πt

2

}∣∣∣∣2 =
∣∣∣∣∫ 2

0

sin
πt

2
e−j2πftdt

∣∣∣∣2 =
16
π2

cos2 2πf
(1− 16f2)2 (66)

where the latter equalities assume Tb = 1. Partitioning the integral in Eq. (66) into two integrals
corresponding to the adjacent time intervals 0 ≤ t ≤ 1 and 1 ≤ t ≤ 2, then making a change of variables
in the second integral to shift it to the interval 0 ≤ t ≤ 1, and finally integrating the result on f between
the limits −B/2 and B/2 produces the identical result to that of Eq. (65).

The maximization of Eq. (63) subject to the energy constraint of Eq. (61) has been carried out
numerically using the MATLAB(R) optimization toolbox function “fminunc” (quasi-Newton method of
convergence). In particular, for each value of B (BTb if Tb 6= 1), the optimum complex signal s0 (t)
(represented by N uniformly spaced samples in the interval (0, 1)) is determined from which the fractional
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out-of-band power 1 − η is calculated using Eq. (63) for η. Because of complexity issues involved in
computing the optimum solution, the number of sample points N is limited to 64. Furthermore, since the
Gaussian integration required to evaluate the double integral of Eq. (63) requires a much higher density
of sample values (not necessarily uniformly spaced), and to allow for Fourier interpolation, we assume
the signal to be bandlimited9 to the Nyquist rate, i.e., 32 (32/Tb if Tb 6= 1). Because of this bandlimiting
assumption, certain optimum signal waveforms (particularly those at small values of B) that exhibit a
sharp discontinuity will have a ringing behavior. This ringing behavior can be minimized by additional
interpolation (filtering) but has proven difficult to eliminate completely.

Figures 4(a) and 4(b) are 3-D plots of the optimum real and imaginary parts of s0 (t) versus t as a
function of B (or equivalently, BTb with Tb = 1) in the interval 0 ≤ B ≤ 3. Figures 5(a) through 5(h)
are a number of cuts of these 3-D plots taken at distinct values of B in the same range. For small values
of B, we observe that the real part of s0 (t) has sharp discontinuities at t = 0 and t = 1 and thus exhibits
the ringing behavior alluded to above. As B increases, the sharpness of the discontinuity at the edges
diminishes, and in the limit of large B, both the real and imaginary parts of s0 (t) approach a sinusoidal
behavior with unit period. Specifically, s0 (t) tends toward the form −α1 sin 2πt + j (β1 + α2 cos 2πt),
where α1, α2, and β1 are constants that also must satisfy the unit energy constraint of Eq. (60), i.e.,
β2

1 + (1/2)
(
α2

1 + α2
2

)
= 1. Figure 6 is the corresponding plot of optimum (minimum) fractional out-of-

band power versus B. Also shown are corresponding results for MSK and SFSK modulations, which can
readily be found in [4, Fig. 2.11]. We observe that by optimizing the signal set at each value of B without
loss in d2

min or finite decoding delay performance, we are able to obtain a significant improvement in
bandwidth efficiency. The quantitative amount of this improvement is given in Table 1 for the 99 percent
and 99.9 percent bandwidths corresponding respectively to the −20 dB and −30 dB out-of-band power
levels.

Before concluding this section, we note that the maximization of Eq. (63) subject to the constraint
in Eq. (62) can be carried out analytically using the method of calculus of variations. Unfortunately,
however, the resulting solution for s0 (t) is in the form of an integral equation that does not lend itself
to a closed-form solution. Thus, there is no strong advantage to presenting these results here since we
have already obtained a numerical solution as discussed above by direct maximization of Eq. (63). One
interesting observation does result from applying the calculus of variations approach and this is that
s0R (t) is an odd function around its midpoint (at t = 1/2) and s0I (t) is an even function around its same
midpoint. Clearly, this observation is justified by the numerical results illustrated in the various parts of
Fig. 5.

B. Memory-Two Case

Analogous to what was done for the memory-one case, we need to maximize the fractional in-band
power of Eq. (60) using now Eq. (58) for G (f). Expressing the various Fourier transforms of Eq. (58)
in terms of their associated signal waveforms and then performing the integration on frequency between
−B/2 and B/2 as required in Eq. (60) produces the following result (again normalizing Tb = 1):

∫ B/2

−B/2
G (f) df =

6∑
i=1

Pi (67)

where

9 Of course, in reality the continuous time-limited signal s0(t) would have infinite bandwidth.
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P1 =
B

4

∫ 1

0

∫ 1

0

(
s

(2)
1 (t) + s

(2)
2 (t)

)(
s

(2)
1 (τ) + s

(2)
2 (τ)

)∗
e−j(π/2)(t−τ) sincπB (t− τ) dtdτ

P2 =
B

4

∫ 1

0

∫ 1

0

(
s

(2)
0 (t)− s(2)

2 (t)
)(

s
(2)
0 (τ)− s(2)

2 (τ)
)∗
e−j(π/2)(t−τ) sincπB (t− τ) dtdτ

P3 =
B

4

∫ 1

0

∫ 1

0

(
s

(2)
0 (t)− s(2)

1 (t)
)(

s
(2)
0 (τ)− s(2)

1 (τ)
)∗
e−j(π/2)(t−τ) sincπB (t− τ) dtdτ

P4 = 2 Re
{
B

4

∫ 1

0

∫ 1

0

(
s

(2)
0 (t)− s(2)

2 (t)
)(

s
(2)
1 (τ) + s

(2)
2 (τ)

)∗
e−j(π/2)(t−τ+1) sincπB (t− τ + 1) dtdτ

}

P5 = 2 Re
{
B

4

∫ 1

0

∫ 1

0

(
s

(2)
0 (t)− s(2)

1 (t)
)(

s
(2)
0 (τ)− s(2)

2 (τ)
)∗
e−j(π/2)(t−τ+1) sincπB (t− τ + 1) dtdτ

}

P6 = 2 Re
{
B

4

∫ 1

0

∫ 1

0

(
s

(2)
0 (t)− s(2)

1 (t)
)(

s
(2)
1 (τ) + s

(2)
2 (τ)

)∗
e−j(π/2)(t−τ+2) sincπB (t− τ + 2) dtdτ

}
(68)

Since, for a given B, s(2)
0 (t) and s

(2)
2 (t) are considered known by virtue of the memory-one solution

[see Eq. (52)], then s
(2)
1 (t) is the only signal waveform that needs to be determined by maximization of

Eq. (60) combined with Eq. (68). (Note that s(2)
3 (t) can be found from the second relation in Eq. (53)

once s(2)
1 (t) is determined.) Also, since the term P2 in Eq. (68) does not depend on s

(2)
1 (t), it can be

omitted from the maximization.
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Table 1. Bandwidth-efficient performance of TCM with
prescribed decoding delay.

Improvement Improvement
1/B99Tb, 1/B99.9Tb,

Signal over MSK, over MSK,
(b/s)/Hz (b/s)/Hz

percent percent

MSK 0.845 — 0.366 —

Optimum (ν = 1) 0.896 6.04 0.659 79.7

Optimum (ν = 2) 1.23 45.6 — —

V. Bandwidth-Efficient TCM with Prescribed Decoding Delay and
Unequal Energy Signals

In the introduction, we alluded to the fact that a relaxation of the equal-energy condition on the signals
potentially could be used to trade off between the power and bandwidth efficiency of the system. We
now investigate the additional constraints that must be placed on the signals in order for the optimum
TCM receiver to still achieve a finite decoding delay equal to the memory of the modulation. In order to
accomplish this, we first briefly review the received signal-plus-noise model, branch metric, and accompa-
nying decision rule leading up to the conditions on the signal differences in Theorem I of [1] [summarized
herein in Eqs. (6) and (7)] and then modify them so as to apply to the case of unequal signal energies.

Corresponding to the baseband signal s (t) of Eq. (1) transmitted over an additive white Gaussian
noise (AWGN) channel, the received signal is

R (t) = s (t) +N (t) (69)

where N (t) is a zero-mean complex Gaussian noise process with PSD N0 W/Hz. For equal energy signals,
the maximum-likelihood (Viterbi) receiver uses as its branch metric in the nth interval

λn (si) = Re

{∫ (n+1)T

nT

R∗ (t) si (t− nT ) dt

}

= Re

{∫ T

0

R∗ (t+ nT ) si (t) dt

}
, i ∈

{
0, 1, · · · , 2ν+1 − 1

}
(70)

Without any constraints on the signal set, for true optimality the Viterbi receiver theoretically needs to
observe the entire transmitted sequence (sum over an infinite number of branch metrics), resulting in
an infinite decoding delay, although in practice one may decode with finite delay using a truncated (but
suboptimal) form of Viterbi algorithm [7]. If the signal differences are constrained as in Eqs. (6) and (7),
then, as previously stated in Theorem I of [1], the receiver can optimally decode the nth information
symbol after ν symbol intervals according to the decision rule:

choose Un = 0 if
n+ν∑
i=ν

λi (s0 − s2n+ν−i) > 0, otherwise choose Un = 1 (71)

For unequal energy signals, the branch metric of Eq. (70) would be modified to
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λn (si) = Re

{∫ (n+1)T

nT

R∗ (t) si (t− nT ) dt

}
− Ei

2

= Re

{∫ T

0

R∗ (t+ nT ) si (t) dt

}
− Ei

2
, i ∈

{
0, 1, · · · , 2ν+1 − 1

}
(72)

where Ei =
∫ T

0
|si (t)|2 dt is the energy of the ith signal in the set. Since the derivation of the conditions

for finite decoding delay given in [1] relies on comparisons of sums of branch metrics, it is straightforward
to substitute Eq. (72) for Eq. (70) in the steps of this derivation, which leads to an additional set of
conditions on the energies of the signals. To illustrate the procedure, we first consider the simplest case
corresponding to unit memory (ν = 1).

Consider the two-state trellis (corresponding to the nth and n + 1st intervals) in Fig. 7, where each
branch is labeled with (1) the input bit that causes the transition between states and (2) the baseband
signal transmitted in accordance with the choice defined in Fig. 1(b). Assume first that we are in state
“0” at time n (having gotten there as a result of decoding symbols in the previous intervals). Suppose now
that the two paths (of length-two branches) that survive at time n+ 2 are those that merge at (emanate
from) the same node at time n + 1 (thereby allowing unique decoding of the transmitted symbol Un).
Since this node can correspond to either state “0” or state “1,” there exist two possibilities, which are
indicated by heavy lines in Figs. 7(a) and 7(b).

For Fig. 7(a), both surviving paths have a first branch corresponding to Un = 1 and thus the decision
Ûn = 1 is unique provided that

(b)

1

1/s 2

1/s 31/s 3

0/s 0 0/s 0

0/s 1

1/s 2

0/s 1

n n + 1 n + 2

1
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1

(a)

Fig. 7.  Trellis diagram for memory-one modulation assuming state "0" at time n:  (a) sur-
viving paths merging at state "1" at time n + 1 and (b) surviving paths merging at state
"0" at time n + 1.

1

0 0 0
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λn (s2) + λn+1 (s3) > λn (s0) + λn+1 (s2) (73a)

and

λn (s2) + λn+1 (s1) > λn (s0) + λn+1 (s0) (73b)

or, equivalently,

λn (s0)− λn (s2) + λn+1 (s2)− λn+1 (s3) < 0 (74a)

and

λn (s0)− λn (s2) + λn+1 (s0)− λn+1 (s1) < 0 (74b)

To simultaneously satisfy Eqs. (74a) and (74b), we need to have

λn+1 (s2)− λn+1 (s3) = λn+1 (s0)− λn+1 (s1) (75)

which is the identical requirement found by Li and Rimoldi [1] when treating the equal signal energy case.
Now using instead the metric definition in Eq. (71) for unequal energy signals, then, analogously to the
results in [1], the condition of Eq. (75) can be satisfied by the first equality in Eq. (5a), namely,

s0 (t)− s1 (t) = s2 (t)− s3 (t) (76)

and in addition

E0 − E1 = E2 − E3 (77)

Note that the relation in Eq. (77) is identical in form to that in Eq. (76) if each of the signals in the latter
is replaced by its energy. This observation will carry over when considering modulations with memory
greater than one.

For Fig. 7(b), both surviving paths have a first branch corresponding to Un = 0 and thus the decision
Ûn = 0 is unique provided that

λn (s0) + λn+1 (s2) > λn (s2) + λn+1 (s3) (78a)

and

λn (s0) + λn+1 (s0) > λn (s2) + λn+1 (s1) (78b)

or, equivalently,
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λn (s0)− λn (s2) + λn+1 (s2)− λn+1 (s3) > 0 (79a)

and

λn (s0)− λn (s2) + λn+1 (s0)− λn+1 (s1) > 0 (79b)

It is clear that the condition in Eq. (75) will also simultaneously satisfy Eqs. (79a) and (79b).

Finally, had we assumed that we were in state “1” at time n, then it would be straightforward to show
that the conditions on the signal set that produce a unique decision on Un would be identical to those
in Eqs. (76) and (77). Thus, we conclude that, for a memory-one modulation of the type described by
Fig. 1(b) with unequal energy signals, the conditions on the signal set to guarantee unique decodability
with 1-symbol delay are those given in Eqs. (76) and (77).

To extend the above to modulations with memory ν greater than one, we proceed as follows. As was
observed in [1], what we now seek are the inequality conditions on the sums of branch metrics such that
the 2ν surviving paths at time n+ν merge at a single node at time n+1. Given a particular state at time
n, this set of 2ν conditions then allows for uniquely decoding Un. Since these conditions are expressed
entirely in terms of the branch metrics for the surviving paths and as such do not depend on the form
of the metric itself (i.e., whether it be Eq. (69) for equal energy signals or Eq. (71) for unequal energy
signals), then it is straightforward to conclude that the finite decoding delay conditions on the signal set
derived in [1] for the equal-energy case also apply now to the signal energies in the nonequal-energy case.
Specifically, in addition to Eq. (6), the signal set must satisfy the energy conditions

E0 − E2m = E2m+1l − E2m+1l+2m , m = 0, 1, 2, · · · , ν − 1, l = 1, 2, · · · , 2ν−m − 1 (80)

Clearly, for the equal-energy case, Eq. (80) is trivially satisfied.

Having now specified the conditions for achieving finite decoding delay with unequal energy signals,
we now investigate the impact of this relaxed restriction on the minimum-squared Euclidean distance
(power efficiency) of the modulation. Again, consider first the memory-one case. For the trellis diagram
of Fig. 7(a), the unnormalized squared Euclidean distance between the length-two error event path and
the all-zeros path (corresponding to Un = 0, Un+1 = 0) is

D2 =
∫ T

0

∣∣s0 (t)− s2 (t)
∣∣2dt+

∫ T

0

∣∣s0 (t)− s1 (t)
∣∣2dt

= 2E0 + E1 + E2 − 2 Re

{∫ T

0

s∗0 (t)
(
s1 (t) + s2 (t)

)
dt

}
(81)

Using Eqs. (76) and (77) in Eq. (81) enables rewriting it in the form

D2 = 2Eav − 2 Re

{∫ T

0

s∗0 (t) s3 (t) dt

}

Eav =
E0 + E1 + E2 + E3

4
=
E0 + E3

2


(82)
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which, when normalized by the average energy of the signal set, Eav, gives

d2 4=
D2

2Eav
= 1−

Re
{∫ T

0
s∗0 (t) s3 (t) dt

}
Eav

= 1−
Re
{∫ T

0
s∗0 (t) s3 (t) dt

}
(E0 + E3) /2

(83)

Following steps analogous to Eqs. (81) through (83) and using the signal difference property in Eq. (76),
it is straightforward to show that the unnormalized squared Euclidean distance between any pair of length-
two paths beginning and ending at the same node (i.e., other pairwise error events) is given by Eq. (83),
i.e., the trellis has a uniform error probability (UEP) property. It can also be shown, using a combination
of Eqs. (76) and (77) in Eq. (81), that Eq. (83) can be expressed as

d2 4=
D2

2Eav
= 1−

Re
{∫ T

0
s∗1 (t) s2 (t) dt

}
(E1 + E2) /2

(84)

Finally, noting that −1 ≤ Re
{∫ T

0
s∗0 (t) s3 (t) dt

}
/ [(E0 + E3) /2] with equality achieved when s0 (t) =

−s3 (t) and likewise −1 ≤ Re
{∫ T

0
s∗1 (t) s2 (t) dt

}
/ [(E1 + E2) /2] with equality achieved when s1 (t) =

−s2 (t), then, in order to achieve the maximum value d2
min = 2, we would need to choose s0 (t) = −s3 (t),

which produces E0 = E3 and also s1 (t) = −s2 (t), which produces E1 = E2. However, from Eq. (77),
E0 + E3 = E1 + E2 and thus E0 = E1 = E2 = E3 = E, i.e., all signals have equal energy. Thus, we
conclude that, for memory one, an unequal energy signal set necessarily results in a value of d2

min < 2.

For arbitrary memory ν, by a straightforward extension of the procedure for memory one, it can be
shown that the distance between any pair of length ν + 1 paths beginning and ending at the same node
(i.e., pairwise error events) is, analogously to Eq. (80), given by

d2 4= 1−
Re
{∫ T

0
s∗0 (t) s2ν+1−1 (t) dt

}
(E0 + E2ν+1−1) /2

(85)

Thus, to achieve the maximum value d2
min = 2, we would need to choose s0 (t) = −s2ν+1−1 (t),

which produces E0 = E2ν+1−1. However, in view of the other forms [analogous to Eq. (84)] that
Eq. (85) can be expressed as, it can also be shown that achieving d2

min = 2 also requires choosing
si (t) = −s2ν+1−1−i (t) , i = 1, 2, · · · , 2ν − 1, which produces Ei = E2ν+1−1−i, i = 1, 2, · · · , 2ν − 1. Finally,
using the energy conditions in Eq. (80), we arrive at the fact that d2

min = 2 can only be achieved when
E0 = E1 = E2 = · · · = E2ν+1−1 = E, i.e., all signals have equal energy. Thus, we conclude that for
arbitrary memory, an unequal energy signal set necessarily results in a value of d2

min < 2.

VI. Conclusion

It is possible to design constant-energy TCM signals that, when transmitted over the AWGN, achieve a
significant improvement in out-of-band power performance relative to conventional modulation schemes,
e.g., MSK, yet still achieve the maximum value of the minimum squared Euclidean distance and also have
finite decoding delay. These bandwidth- and power-efficient signals can be implemented using a simple
pulse-amplitude modulation (PAM)-based transmitter.
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